Precise RNA targeting with CRISPR–Cas13d – Nature Biotechnology

May Be Interested In:South Carolina and the 67 teams in the March Madness bracket trying to stop a Gamecocks repeat


  • Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676(2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, F. et al. Multiplexed inhibition of immunosuppressive genes with Cas13d for combinatorial cancer immunotherapy. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02535-2 (2025).

  • Tieu, V. et al. A versatile CRISPR–Cas13d platform for multiplexed transcriptomic regulation and metabolic engineering in primary human T cells. Cell 187, 1278–1295(2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wessels, H.-H. et al. Massively parallel Cas13 screens reveal principles for guide RNA design. Nat. Biotechnol. 38, 722–727 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morelli, K. H. et al. An RNA-targeting CRISPR–Cas13d system alleviates disease-related phenotypes in Huntington’s disease models. Nat. Neurosci. 26, 27–38 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kelley, C. P., Haerle, M. C. & Wang, E. T. Negative autoregulation mitigates collateral RNase activity of repeat-targeting CRISPR–Cas13d in mammalian cells. Cell Rep. 40, 111226 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, P. et al. Collateral activity of the CRISPR/RfxCas13d system in human cells. Commun. Biol. 6, 1–8 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tong, H. et al. High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects. Nat. Biotechnol. 41, 108–119 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Y. et al. The collateral activity of RfxCas13d can induce lethality in a RfxCas13d knock-in mouse model. Genome Biol. 24, 20 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, J. et al. Deep learning and CRISPR–Cas13d ortholog discovery for optimized RNA targeting. Cell Syst. 14, 1087–1102(2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, X. et al. Transcriptome-wide Cas13 guide RNA design for model organisms and viral RNA pathogens. Cell Genom. 1, 100001 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wessels, H.-H. et al. Efficient combinatorial targeting of RNA transcripts in single cells with Cas13 RNA Perturb-seq. Nat. Methods 20, 86–94 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wessels, H.-H. et al. Prediction of on-target and off-target activity of CRISPR–Cas13d guide RNAs using deep learning. Nat. Biotechnol. 42, 628–637 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • DeWeirdt, P. C. et al. Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat. Biotechnol. 39, 94–104 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, F. et al. A strategy for Cas13 miniaturization based on the structure and AlphaFold. Nat. Commun. 14, 5545 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCallister, T. X. et al. A high-fidelity CRISPR–Cas13 system improves abnormalities associated with C9ORF72-linked ALS/FTD. Nat. Commun. 16, 460 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article 

    Google Scholar 

  • Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kolde, R., Laur, S., Adler, P. & Vilo, J. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 28, 573–580 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • share Share facebook pinterest whatsapp x print

    Similar Content

    Elon Musk says there's 'only a 20% chance of annihilation' with AI
    Elon Musk says there’s ‘only a 20% chance of annihilation’ with AI
    These are all of the missions heading to the moon in 2025
    These are all of the missions heading to the moon in 2025
    Demidov, Chiefs, Verstappen...: 10 questions auxquelles 2025 répondra
    Demidov, Chiefs, Verstappen…: 10 questions auxquelles 2025 répondra
    The Best Time Management Apps to Tame the Chaos
    The Best Time Management Apps to Tame the Chaos
    Watch: Moment man's saved from burning LA home
    Watch: Moment man’s saved from burning LA home
    The WA election couldn't have gone worse for the state's Liberal Party
    The WA election couldn’t have gone worse for the state’s Liberal Party
    Headline Stories: Global Events in the Spotlight | © 2025 | Daily News